MathNet.Numerics.FSharp 3.6.0

dotnet add package MathNet.Numerics.FSharp --version 3.6.0                
NuGet\Install-Package MathNet.Numerics.FSharp -Version 3.6.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="MathNet.Numerics.FSharp" Version="3.6.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 3.6.0                
#r "nuget: MathNet.Numerics.FSharp, 3.6.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install MathNet.Numerics.FSharp as a Cake Addin
#addin nuget:?package=MathNet.Numerics.FSharp&version=3.6.0

// Install MathNet.Numerics.FSharp as a Cake Tool
#tool nuget:?package=MathNet.Numerics.FSharp&version=3.6.0                

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports F# 3.0 on .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5 and Windows 8 with PCL portable profile 47; Android/iOS with Xamarin.

Product Compatible and additional computed target framework versions.
.NET Framework net35 is compatible.  net40 is compatible.  net403 was computed.  net45 was computed.  net451 was computed.  net452 was computed.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

GitHub repositories (2)

Showing the top 2 popular GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
A robust execution client for Ethereum node operators.
Version Downloads Last updated
3.6.0 789 3/22/2015
3.5.0 1,693 1/10/2015
3.4.0 117 1/4/2015
3.3.0 976 11/26/2014
3.3.0-beta2 66 10/25/2014
3.3.0-beta1 65 9/28/2014
3.2.3 686 9/6/2014
3.2.2 71 9/5/2014
3.2.1 216 8/5/2014
3.2.0 58 8/5/2014
3.1.0 2,402 7/20/2014
3.0.2 337 6/26/2014
3.0.1 65 6/24/2014
3.0.0 435 6/21/2014
3.0.0-beta05 58 6/20/2014
3.0.0-beta04 50 6/15/2014
3.0.0-beta03 48 6/5/2014
3.0.0-beta02 51 5/29/2014
3.0.0-beta01 136 4/14/2014
3.0.0-alpha9 51 3/29/2014
3.0.0-alpha8 48 2/26/2014
3.0.0-alpha7 49 12/30/2013
3.0.0-alpha6 57 12/2/2013
3.0.0-alpha5 65 10/2/2013
3.0.0-alpha4 51 9/22/2013
3.0.0-alpha1 47 9/1/2013
2.6.0 1,739 7/26/2013
2.5.0 115 4/14/2013
2.4.0 56 2/3/2013
2.3.0 66 11/25/2012
2.2.1 54 8/29/2012
2.2.0 56 8/27/2012
2.1.2 122 10/9/2011
2.1.1 56 10/3/2011
2.1.0.19 57 10/3/2011

Distributions: ChiSquare.CDF more robust for large numbers ~Baltazar Bieniek
Linear Algebra: MatrixStorage.Map2 equivalent to VectorStorage.Map2
Linear Algebra: Matrix and Vector Find/Find2, Exists/Exists2, ForAll/ForAll2
Linear Algebra: more consistent range checking in MatrixStorage.Clear and related
Linear Algebra: mixed-storage fall back implementations now leverage higher-order functions
BUG: Linear Algebra: fix loop range in MatrixStorage.ClearColumns (built-in storage not affected)
BUG: Linear Algebra: fix sparse matrix equality.
BUG: Linear Algebra: ArgumentException instead of index exception when trying to create an empty matrix.
Generate: Unfold, Fibonacci; Normal and Standard replacing Gaussian and Stable.
Native Providers: NativeProviderLoader to automatically load the provider for the matching processor architecture (x86, x64) ~Kuan Bartel
Native Providers: Control.NativeProviderPath allowing to explicitly declare where to load binaries from.
MKL Native Provider: support for native complex eigen-value decomposition ~Marcus Cuda
MKL Native Provider: non-convergence checks in singular-value and eigen-value decompositions ~Marcus Cuda